Microenvironment and multiple myeloma spread.
Ribatti D et al. Thromb Res. 2014 May;133 Suppl 2:S102-6. doi: 10.1016/S0049-3848(14)50017-5.

The role of bone morphogenetic proteins in myeloma cell survival.
Holien T et al. Cytokine Growth Factor Rev. 2014 May 9. pii: S1359-6101(14)00042-2. doi: 10.1016/j.cytogfr.2014.04.009. [Epub ahead of print].

Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress.
Huang H et al. Toxicol Lett. 2014 May 20. pii: S0378-4274(14)00217-3. doi: 10.1016/j.toxlet.2014.05.012. [Epub ahead of print].

Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism.
Gao M et al.Acta Biochim Biophys Sin (Shanghai). 2014 May 21. pii: gmu041. [Epub ahead of print].

MicroRNA and Multiple Myeloma: from Laboratory Findings to Translational Therapeutic Approaches.
Rossi M et al. Curr Pharm Biotechnol. 2014 May 18. [Epub ahead of print].

Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma.
Rosean TR et al. Immunol Res. 2014 May 21. [Epub ahead of print].

Chromosome 8q24.1/c-MYC Abnormality: A Marker for High-Risk Myeloma.
Glitza IC et al. Leuk Lymphoma. 2014 May 21:1-18. [Epub ahead of print].

Berberine induces apoptosis in human multiple myeloma cell line U266 through hypomethylation of p53 promoter.
Qing Y et al. Cell Biol Int. 2014 May;38(5):563-70.

New mechanism of lenalidomide activity.
Keevan J et al. Cancer Biol Ther. 2014 May 19;15(8). [Epub ahead of print].

Human heat shock protein-specific cytotoxic T lymphocytes display potent antitumour immunity in multiple myeloma.
Li R et al. Br J Haematol. 2014 May 14. doi: 10.1111/bjh.12943. [Epub ahead of print].

Chromosomal aberrations of cancer-testis antigens in myeloma patients.
Curioni-Fontecedro A et al. Hematol Oncol. 2014 May 13. doi: 10.1002/hon.2143. [Epub ahead of print].

The skinny on obesity and plasma cell myeloma: a review of the literature.
Carson KR et al. Bone Marrow Transplant. 2014 May 12. doi: 10.1038/bmt.2014.71. [Epub ahead of print].

A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells in vitro.
Leotta M et al. J Cell Physiol. 2014 May 13. doi: 10.1002/jcp.24669. [Epub ahead of print].

Transcriptome analysis reveals molecular profiles associated with evolving steps of monoclonal gammopathies.
López-Corral L et al. Haematologica. 2014 May 9. [Epub ahead of print].

Targeting eIF4GI translation initiation factor affords an attractive therapeutic strategy in multiple myeloma.
Attar-Schneider O et al. Cell Signal. 2014 May 9. pii: S0898-6568(14)00175-2. doi: 10.1016/j.cellsig.2014.05.005. [Epub ahead of print].

The drug vehicle and solvent N-methylpyrrolidone is an immunomodulator and antimyeloma compound.
Shortt J et al. Cell Rep. 2014 May 22;7(4):1009-19. doi: 10.1016/j.celrep.2014.04.008. Epub 2014 May 9.

Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers.
Cottini F et al. Nat Med. 2014 May 11. doi: 10.1038/nm.3562. [Epub ahead of print].

Cancer-testis antigen MAGE-C2/CT10 induces spontaneous CD4(+) and CD8(+) T-cell responses in multiple myeloma patients.
Reinhard H et al. Blood Cancer J. 2014 May 9;4:e212. doi: 10.1038/bcj.2014.31.

TALEN-mediated genetic tailoring as a tool to analyze the function of acquired mutations in multiple myeloma cells.
Wu X et al. Blood Cancer J. 2014 May 9;4:e210. doi: 10.1038/bcj.2014.32.

Common progenitor cells in mature B-cell malignancies: implications for therapy.
Green MR et al. Curr Opin Hematol. 2014 May 7. [Epub ahead of print].

Bortezomib resistance and MUC1 in myeloma.
Grant S. Blood. 2014 May 8;123(19):2910-2. doi: 10.1182/blood-2014-03-563882.

Activation of Liver X Receptors inhibits of Hedgehog signaling, clonogenic growth,and self-renewal in multiple myeloma.
Agarwal JR et al. Mol Cancer Ther. 2014 May 7. [Epub ahead of print].

Arylazopyrazole AAP1742 Inhibits CDKs and Induces Apoptosis in Multiple Myeloma Cells via Mcl-1 Downregulation.
Jorda R et al. Chem Biol Drug Des. 2014 May 6. doi: 10.1111/cbdd.12330. [Epub ahead of print].

A gene expression signature for high-risk multiple myeloma.
Kuiper R et al. Leukemia. 2014 May;28(5):1178-80. doi: 10.1038/leu.2014.53.

Anti-Galectin-3 Therapy: A New Chance for Multiple Myeloma and Ovarian Cancer?
Mirandola L et al. Int Rev Immunol. 2014 May 6. [Epub ahead of print].

Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the etiology of multiple myeloma.
Gordon MW et al. Mol Carcinog. 2014 May 6. doi: 10.1002/mc.22175. [Epub ahead of print].

Toll-Like Receptor (TLR)-1/2 Triggering of Multiple Myeloma Cells Modulates Their Adhesion to Bone Marrow Stromal Cells and Enhances Bortezomib-Induced Apoptosis.
Abdi J et al. PLoS One. 2014 May 2;9(5):e96608. doi: 10.1371/journal.pone.0096608. eCollection 2014.

Aptamer TY04 inhibits the growth of multiple myeloma cells via cell cycle arrest.
Dai H et al. Tumour Biol. 2014 May 3. [Epub ahead of print].

Down-Regulation of CD9 by Methylation Decreased Bortezomib Sensitivity in Multiple Myeloma.
Hu X et al. PLoS One. 2014 May 2;9(5):e95765. doi: 10.1371/journal.pone.0095765. eCollection 2014.

Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma.
Hiasa M et al. Leukemia. 2014 May 2. doi: 10.1038/leu.2014.147. [Epub ahead of print].

The role of epigenetics in the biology of multiple myeloma.
Dimopoulos K et al. Blood Cancer J. 2014 May 2;4:e207. doi: 10.1038/bcj.2014.29.

CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma.
Murray ME et al. Blood. 2014 Apr 29. [Epub ahead of print].

Comparative analysis of multiple myeloma treatment by CD138 antigen targeting with bismuth-213 and Melphalan chemotherapy.
Gouard S et al. Nucl Med Biol. 2014 May;41S:e30-e35. doi: 10.1016/j.nucmedbio.2014.02.008. Epub 2014 Mar 15.