Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma.
Kikuchi S et al. Leukemia. 2015 Mar 24. doi: 10.1038/leu.2015.83. [Epub ahead of print].

Structure-activity relationships of benzhydrol derivatives based on 1′-acetoxychavicol acetate (ACA) and their inhibitory activities on multiple myeloma cell growth via inactivation of the NF-κB pathway.
Misawa T et al. Bioorg Med Chem. 2015 Mar 7. pii: S0968-0896(15)00143-1. doi: 10.1016/j.bmc.2015.02.039. [Epub ahead of print].

Cell adhesion down-regulates the expression of vacuolar protein sorting 4B (VPS4B) and contributes to drug resistance in multiple myeloma cells.
Tang J et al. Int J Hematol. 2015 Mar 25. [Epub ahead of print].

Matrine and CYC116 synergistically inhibit growth and induce apoptosis in multiple myeloma cells.
Zhou YH et al. Chin J Integr Med. 2015 Mar 24. [Epub ahead of print].

BRAF V600E mutation in early-stage multiple myeloma: good response to broad acting drugs and no relation to prognosis.
Rustad EH et al. Blood Cancer J. 2015 Mar 20;5:e299. doi: 10.1038/bcj.2015.24.

SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling.
Xu J et al. Biochem Biophys Res Commun. 2015 Mar 17. pii: S0006-291X(15)00482-9. doi: 10.1016/j.bbrc.2015.03.047. [Epub ahead of print].

Deregulation of DNA double-strand break repair in multiple myeloma: implications for genome stability.
Herrero AB et al. PLoS One. 2015 Mar 19;10(3):e0121581. doi: 10.1371/journal.pone.0121581. eCollection 2015.

IBRUTinib: BRUTe Force against Bortezomib-Resistant Myeloma Cells.
Xian L et al. Cell Cycle. 2015 Mar 18:0. [Epub ahead of print].

Increased effect of IMiDs by addition of cytokine-induced killer cells in multiple myeloma.
Bullok KF et al. Hematol Oncol. 2015 Mar 18. doi: 10.1002/hon.2200. [Epub ahead of print].

Different Associations of CD45 Isoforms with STAT3, PKC and ERK Regulate IL-6-Induced Proliferation in Myeloma.
Zheng X et al. PLoS One. 2015 Mar 17;10(3):e0119780. doi: 10.1371/journal.pone.0119780. eCollection 2015.

Proteasome inhibitors and IMiDs can overcome some high-risk cytogenetics in multiple myeloma but not gain 1q21.
Nahi H et al. Eur J Haematol. 2015 Mar 16. doi: 10.1111/ejh.12546. [Epub ahead of print].

PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma.
Paiva B et al. Leukemia. 2015 Mar 17. doi: 10.1038/leu.2015.79. [Epub ahead of print].

Differentiation of antiinflammatory and antitumorigenic properties of stabilized enantiomers of thalidomide analogs.
Jacques V et al. Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):E1471-9. doi: 10.1073/pnas.1417832112. Epub 2015 Mar 9.

Oncogenic and Therapeutic Targeting of PTEN Loss in Bone Malignancies.
Xi Y et al. J Cell Biochem. 2015 Mar 13. doi: 10.1002/jcb.25159. [Epub ahead of print].

Immunohistochemical expression of endoglin offers a reliable estimation of bone marrow neoangiogenesis inmultiple myeloma.
Alexandrakis MG et al. J Cancer Res Clin Oncol. 2015 Mar 13. [Epub ahead of print].

KSP inhibitor SB743921 induces death of multiple myeloma cells via inhibition of the NF-κB signaling pathway.
Song IS et al. BMB Rep. 2015 Mar 16. pii: 3109. [Epub ahead of print].

Curcumin targets in inflammation and cancer.
Deguchi A et al. Endocr Metab Immune Disord Drug Targets. 2015 Mar 16. [Epub ahead of print].

Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy.
Desantis A et al. EMBO J. 2015 Mar 14. pii: e201489920. [Epub ahead of print].

Metabolic signature identifies novel targets for drug resistance in Multiple Myeloma.
Maiso P et al. Cancer Res. 2015 Mar 13. pii: canres.3400.2014. [Epub ahead of print].

Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.
Zub KA et al. PLoS One. 2015 Mar 13;10(3):e0119857. doi: 10.1371/journal.pone.0119857. eCollection 2015.

NOD/SCID-GAMMA Mice Are an Ideal Strain to Assess the Efficacy of Therapeutic Agents Used in the Treatment of Myeloma Bone Disease.
Lawson MA et al. PLoS One. 2015 Mar 13;10(3):e0119546. doi: 10.1371/journal.pone.0119546. eCollection 2015.

Resolving the daratumumab interference with blood compatibility testing.
Chapuy CI et al. Transfusion. 2015 Mar 12. doi: 10.1111/trf.13069. [Epub ahead of print].

Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma.
Overdijk MB et al. MAbs. 2015 Mar 4;7(2):311-21. doi: 10.1080/19420862.2015.1007813.

A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects onmultiple myeloma cell growth and tumor progression.
Ciavarella S et al. Stem Cells Dev. 2015 Mar 10. [Epub ahead of print].

Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow.
Matthes T et al. Leukemia. 2015 Mar 10. doi: 10.1038/leu.2015.68. [Epub ahead of print].

Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells from Multiple Myeloma Patients by Targeting BMP4 Transcription.
Zhuang W et al. Stem Cells. 2015 Mar 6. doi: 10.1002/stem.1989. [Epub ahead of print].

Flunarizine exhibits in vitro efficacy against lymphoma and multiple myeloma cells.
Schmeel LC et al. Anticancer Res. 2015 Mar;35(3):1369-76.

Impact of lenalidomide on immune functions in the setting of maintenance therapy for multiple myeloma.
Brissot E et al. Leukemia. 2015 Mar 9. doi: 10.1038/leu.2015.64. [Epub ahead of print].

Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients.
Yousef S et al. Blood Cancer J. 2015 Mar 6;5:e285. doi: 10.1038/bcj.2015.7.

Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M3P).
Kortüm KM et al. Ann Hematol. 2015 Mar 7. [Epub ahead of print].

Interleukin-10 Induces Both Plasma Cell Proliferation and Angiogenesis in Multiple Myeloma.
Alexandrakis MG et al. Pathol Oncol Res. 2015 Mar 6. [Epub ahead of print].

Mast Cells Influence the Proliferation Rate of Myeloma Plasma Cells.
Pappa CA et al. Cancer Invest. 2015 Mar 4. [Epub ahead of print].

Dynamic interplay between bone and multiple myeloma: Emerging roles of the osteoblast.
Reagan MR et al. Bone. 2015 Feb 26;75:161-169. doi: 10.1016/j.bone.2015.02.021. [Epub ahead of print].

miR-137/197 induce apoptosis and suppress tumorigenicity by targeting MCL-1 in multiple myeloma.
Yang Y et al. Clin Cancer Res. 2015 Feb 27. pii: clincanres.1437.2014. [Epub ahead of print].

t(14;16)-positive multiple myeloma shows negativity for CD56 expression and unfavorable outcome even in the era of novel drugs.
Narita T et al. Blood Cancer J. 2015 Feb 27;5:e285. doi: 10.1038/bcj.2015.6.

B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy?
Hengeveld PJ et al. Blood Cancer J. 2015 Feb 27;5:e282. doi: 10.1038/bcj.2015.3.

eIF4E and eIF4GI have distinct and differential imprints on multiple myeloma’s proteome and signaling.
Attar-Schneider O et al. Oncotarget. 2015 Feb 28;6(6):4315-29.

Targeting the Pro-Survival Protein MET with Tivantinib (ARQ 197) Inhibits Growth of Multiple Myeloma Cells.
Zaman S et al. Neoplasia. 2015 Mar;17(3):289-300. doi: 10.1016/j.neo.2015.01.006.