Epigenetic silencing of a long non-coding RNA KIAA0495 in multiple myeloma.
Wong KY et al. Mol Cancer. 2015 Sep 26;14(1):175.

3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma.
de la Puente P et al. Biomaterials. 2015 Sep 12;73:70-84. doi: 10.1016/j.biomaterials.2015.09.017. [Epub ahead of print]

Transcriptional dysregulation of the deleted in colorectal carcinoma gene in multiple myeloma and monoclonal gammopathy of undetermined significance.
Nagoshi H et al. Genes Chromosomes Cancer. 2015 Sep 22. doi: 10.1002/gcc.22290. [Epub ahead of print].

Targeting PYK2 mediates microenvironment-specific cell death in multiple myeloma.
Meads MB et al. Oncogene. 2015 Sep 21. doi: 10.1038/onc.2015.334. [Epub ahead of print].

Effective impairment of myeloma cells and their progenitors by blockade of monocarboxylate transportation.
Hanson DJ et al. Oncotarget. 2015 Sep 10. [Epub ahead of print].

Deletion of Chromosomal Region 8p21 Confers Resistance to Bortezomib and Is Associated with Upregulated Decoy TRAIL Receptor Expression in Patients with Multiple Myeloma.
Duru AD et al. PLoS One. 2015 Sep 17;10(9):e0138248. doi: 10.1371/journal.pone.0138248. eCollection 2015.

Engineering Anti-myeloma Responses Using Affinity-Enhanced TCR-Engineered T Cells.
San Miguel JF et al. Cancer Cell. 2015 Sep 14;28(3):281-3. doi: 10.1016/j.ccell.2015.08.009.

Differential Expression of Non-Shelterin Genes Associated with High Telomerase Levels and Telomere Shortening in Plasma Cell Disorders.
Panero J et al. PLoS One. 2015 Sep 14;10(9):e0137972. doi: 10.1371/journal.pone.0137972. eCollection 2015.

Behavioral and pharmacological characteristics of bortezomib-induced peripheral neuropathy in rats.
Yamamoto S et al. J Pharmacol Sci. 2015 Aug 29. pii: S1347-8613(15)00181-4. doi: 10.1016/j.jphs.2015.08.006. [Epub ahead of print].

Optimizing and predicting the in vivo activity of AT9283 as a monotherapy and in combination with paclitaxel.
Moawad EY et al. J Gastrointest Cancer. 2015 Sep 7. [Epub ahead of print].

Downregulation of MicroRNA-152 Contributes to High Expression of DKK1 in Multiple Myeloma.
Xu Y et al. RNA Biol. 2015 Sep 23:0. [Epub ahead of print].

Neurotrophins and B-cell malignancies.
Hillis J et al. Cell Mol Life Sci. 2015 Sep 23. [Epub ahead of print].

Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells.
Mizuno S et al. Int J Hematol. 2015 Sep 4. [Epub ahead of print].

Post-transcriptional modifications contribute to the upregulation of cyclin D2 in multiple myeloma.
Misiewicz-Krzeminska I et al. Clin Cancer Res. 2015 Sep 4. pii: clincanres.2796.2014. [Epub ahead of print].

Genomic profiling of myeloma: the best approach, a comparison of cytogenetics, FISH and array-CGH of 112myeloma cases.
Rack K et al. J Clin Pathol. 2015 Sep 3. pii: jclinpath-2015-203054. doi: 10.1136/jclinpath-2015-203054. [Epub ahead of print].

SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by Pomalidomide.
Jiang H et al. Leukemia. 2015 Sep 4. doi: 10.1038/leu.2015.240. [Epub ahead of print].

TRAF6 is required for BLyS-mediated NF-κB signaling in multiple myeloma cells.
Wang X et al. Med Oncol. 2015 Oct;32(10):671. doi: 10.1007/s12032-015-0671-2. Epub 2015 Sep 3.

SC06, a novel small molecule compound, displays preclinical activity against multiple myeloma by disrupting the mTOR signaling pathway.
Han K et al. Sci Rep. 2015 Sep 2;5:12809. doi: 10.1038/srep12809.