Targeting proteasome ubiquitin receptor Rpn13 in multiple myeloma.
Song Y et al. Leukemia. 2016 May 20. doi: 10.1038/leu.2016.97. [Epub ahead of print].

Daratumumab depletes CD38+ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma.
Krejcik J et al. Blood. 2016 May 24. pii: blood-2015-12-687749. [Epub ahead of print].

Unusual cytological features in multiple myeloma.
Abdulsalam AH et al. Am J Hematol. 2016 May 24. doi: 10.1002/ajh.24428. [Epub ahead of print].

Structural analysis of human KDM5B guides histone demethylase inhibitor development.
Johansson C et al. Nat Chem Biol. 2016 May 23. doi: 10.1038/nchembio.2087. [Epub ahead of print].

Inhibition of the neuronal NFκB pathway attenuates bortezomib-induced neuropathy in a mouse model.
Alé A et al.Neurotoxicology. 2016 May 19. pii: S0161-813X(16)30069-9. doi: 10.1016/j.neuro.2016.05.004. [Epub ahead of print].

A clinically relevant in vivo zebrafish model of human multiple myeloma (MM) to study preclinical therapeutic efficacy.
Lin J et al. Blood. 2016 May 18. pii: blood-2016-03-704460. [Epub ahead of print].

Comparison of intramedullary myeloma and corresponding extramedullary soft tissue plasmacytomas using genetic mutational panel analyses.
de Haart SJ et al. Blood Cancer J. 2016 May 20;6:e426. doi: 10.1038/bcj.2016.35.

Activity of aldehyde dehydrogenase in B-cell and plasma cell subsets of monoclonal gammopathy patients and healthy donors.
Všianská P et al. Eur J Haematol. 2016 May 20. doi: 10.1111/ejh.12779. [Epub ahead of print].

Assessment of serum thiol/disulfide homeostasis in multiple myeloma patients by a new method.
Guney T et al. Redox Rep. 2016 May 19:1-6. [Epub ahead of print].

Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma.
Amodio N et al. Mol Cancer Ther. 2016 May 18. [Epub ahead of print].

RBQ3 participates in multiple myeloma cell proliferation, adhesion and chemoresistance.
Liu H et al. Int J Biol Macromol. 2016 May 14. pii: S0141-8130(16)30461-5. doi: 10.1016/j.ijbiomac.2016.05.050. [Epub ahead of print].

High throughput chemical library screening identifies a novel p110-δ inhibitor that potentiates the anti-myelomaeffect of bortezomib.
Malek E et al. Oncotarget. 2016 May 24. doi: 10.18632/oncotarget.9568. [Epub ahead of print].

Granulocytic myeloid-derived suppressor cells promote angiogenesis in the context of multiple myeloma.
Binsfeld M et al. Oncotarget. 2016 May 10. doi: 10.18632/oncotarget.9270. [Epub ahead of print].

Endoplasmic-reticulum stress pathway-associated mechanisms of action of proteasome inhibitors in multiple myeloma.
Ri M et al. Int J Hematol. 2016 May 12. [Epub ahead of print].

Tight Junction Protein 1: New Insights into Proteasome Inhibitor Resistance and Myeloma Pathophysiology.
Mitsiades CS et al. Cancer Cell. 2016 May 9;29(5):611-2. doi: 10.1016/j.ccell.2016.04.009.

Marizomib irreversibly inhibits proteasome to overcome compensatory hyperactivation in multiple myelomaand solid tumour patients.
Levin N et al. Br J Haematol. 2016 May 9. doi: 10.1111/bjh.14113. [Epub ahead of print].

Identification of a novel microRNA miR-4449 as a potential blood based marker in multiple myeloma.
Shen X, et al. Clin Chem Lab Med. 2016 May 6. pii: /j/cclm.ahead-of-print/cclm-2015-1108/cclm-2015-1108.xml. doi: 10.1515/cclm-2015-1108. [Epub ahead of print].

Translocation t(11;14) in Newly Diagnosed Multiple Myeloma Patients, Is it Always Favorable?
Leiba M et al. Genes Chromosomes Cancer. 2016 May 6. doi: 10.1002/gcc.22372. [Epub ahead of print].

Sepantronium Bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance.
de Haart SJ et al. Haematologica. 2016 May 5. pii: haematol.2015.139667. [Epub ahead of print].

Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway.
Fan Y et al. Biochem Biophys Res Commun. 2016 Jun 10;474(4):660-6. doi: 10.1016/j.bbrc.2016.04.146. Epub 2016 May 2.

Cyclin D type does not influence cell cycle response to DNA damage caused by ionizing radiation in multiple myeloma tumours.
Smith D et al. Br J Haematol. 2016 Jun;173(5):693-704. doi: 10.1111/bjh.13982. Epub 2016 May 4.

Cytoplasmic calcium increase via fusion with inactivated Sendai virus induces apoptosis in human multiple myeloma cells by downregulation of c-Myc oncogene.
Jiang Y et al. Oncotarget. 2016 Apr 29. doi: 10.18632/oncotarget.9105. [Epub ahead of print].

Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival.
Xu Q et al. BMC Cancer. 2016 May 3;16(1):297. doi: 10.1186/s12885-016-2331-0.

Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling.
Zhang XD et al. Cancer Cell. 2016 May 9;29(5):639-52. doi: 10.1016/j.ccell.2016.03.026. Epub 2016 Apr 28.

Role of the tumor microenvironment in mature B-cell lymphoid malignancies.
Fowler NH et al. Haematologica. 2016 May;101(5):531-40. doi: 10.3324/haematol.2015.139493.

APRIL and BCMA promote human multiple myeloma growth, chemoresistance, and immunosuppression in the bone marrow microenvironment.
Tai YT et al. Blood. 2016 Apr 28. pii: blood-2016-01-691162. [Epub ahead of print].

Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism.
Soriano GP et al. Leukemia. 2016 May 27. doi: 10.1038/leu.2016.102. [Epub ahead of print].

A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance inmultiple myeloma cells.
Sharma Das D et al. Leukemia. 2016 May 24. doi: 10.1038/leu.2016.96. [Epub ahead of print].

Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade.
Suen H et al.Leukemia. 2016 May 17. doi: 10.1038/leu.2016.84. [Epub ahead of print].