Genomic complexity of multiple myeloma and its clinical implications.
Manier S et al. Nat Rev Clin Oncol. 2016 Aug 17. doi: 10.1038/nrclinonc.2016.122. [Epub ahead of print].

Baseline characteristics, chromosomal alterations and treatment affecting prognosis of deletion 17p in newly diagnosed myeloma.
Merz M et al. Am J Hematol. 2016 Aug 10. doi: 10.1002/ajh.24533. [Epub ahead of print].

Post-Transplant Outcomes in High-Risk Compared with Non-High-Risk Multiple Myeloma: A CIBMTR Analysis.
Scott EC et al. Biol Blood Marrow Transplant. 2016 Aug 2. pii: S1083-8791(16)30223-3. doi: 10.1016/j.bbmt.2016.07.007. [Epub ahead of print].

Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.
Liu H et al. Sci Transl Med. 2016 Aug 24;8(353):353ra113. doi: 10.1126/scitranslmed.aad8949.

Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors.
Turner JG et al. J Hematol Oncol. 2016 Aug 24;9(1):73. doi: 10.1186/s13045-016-0304-z.

Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies.
Imai Y et al. Cancer Sci. 2016 Aug 24. doi: 10.1111/cas.13062. [Epub ahead of print].

Combined expression of miR-34a and Smac mediated by oncolytic vaccinia virus synergistically promote anti-tumor effects in Multiple Myeloma.
Lei W et al. Sci Rep. 2016 Aug 24;6:32174. doi: 10.1038/srep32174.

Bone marrow B lymphocytes in multiple myeloma and MGUS: Focus on distribution of naïve cells and memory subsets.
Pojero F et al. Leuk Res. 2016 Aug 13;49:51-59. doi: 10.1016/j.leukres.2016.08.008. [Epub ahead of print].

NF-κB dysregulation in multiple myeloma.
Matthews GM et al. Semin Cancer Biol. 2016 Aug 17. pii: S1044-579X(16)30038-4. doi: 10.1016/j.semcancer.2016.08.005. [Epub ahead of print].

Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo.
Jarauta V et al. Cancer Lett. 2016 Aug 23. pii: S0304-3835(16)30494-3. doi: 10.1016/j.canlet.2016.08.019. [Epub ahead of print].

Pim2 is important for regulating DNA damage response in multiple myeloma cells.
Ramachandran J et al. Blood Cancer J. 2016 Aug 26;6(8):e462. doi: 10.1038/bcj.2016.73.

Potent in vitro and in vivo effects of polyclonal anti-human-myeloma globulins.
Schieferdecker A et al. Oncotarget. 2016 Aug 22. doi: 10.18632/oncotarget.11489. [Epub ahead of print].

NF-κB dysregulation in multiple myeloma.
Matthews GM et al. Semin Cancer Biol. 2016 Aug 17. pii: S1044-579X(16)30038-4. doi: 10.1016/j.semcancer.2016.08.005. [Epub ahead of print].

Anti-myeloma activity of MELK inhibitor OTS167: effects on drug-resistant myeloma cells and putative myelomastem cell replenishment of malignant plasma cells.
Stefka AT et al. Blood Cancer J. 2016 Aug 19;6(8):e460. doi: 10.1038/bcj.2016.71.

Synergistic DNA-damaging effect in multiple myeloma with the combination of zalypsis, bortezomib and dexamethasone.
López-Iglesias AA et al. Haematologica. 2016 Aug 18. pii: haematol.2016.146076. [Epub ahead of print].

PRIMA-1 targets the vulnerability of multiple myeloma of deregulated protein homeostasis through the perturbation of ER stress via p73 demethylation.
Teoh PJ et al. Oncotarget. 2016 Aug 12. doi: 10.18632/oncotarget.11241. [Epub ahead of print].

Target fluorescence in-situ hybridization (Target FISH) for plasma cell enrichment in myeloma.
Ma ES et al. Mol Cytogenet. 2016 Aug 16;9:63. doi: 10.1186/s13039-016-0263-7. eCollection 2016.

Endothelin-1 (ET-1) induces resistance to bortezomib in human multiple myeloma cells via a pathway involving the ETB receptor and upregulation of proteasomal activity.
Vaiou M et al. J Cancer Res Clin Oncol. 2016 Aug 16. [Epub ahead of print].

Shi Y et al. Cancer Res. 2016 Aug 16. pii: canres.1019.2016. [Epub ahead of print].

Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy.
Dytfeld D1 et al. Oncotarget. 2016 Aug 4. doi: 10.18632/oncotarget.11059. [Epub ahead of print].

Association of IL-6 Promoter and Receptor Polymorphisms with Multiple Myeloma Risk: A Systematic Review and Meta-Analysis.
Li Y et al. Genet Test Mol Biomarkers. 2016 Aug 15. [Epub ahead of print].

The selectivity of Marinopyrrole A to induce apoptosis in MCL1high BCL2low expressing myeloma cells is related to its ability to impair protein translation.
Gomez-Bougie P et al. Br J Haematol. 2016 Aug 14. doi: 10.1111/bjh.14293. [Epub ahead of print].

Contact of myeloma cells induces a characteristic transcriptome signature in skeletal precursor cells – Implications for myeloma bone disease.
Julia D et al. Bone. 2016 Aug 9. pii: S8756-3282(16)30217-4. doi: 10.1016/j.bone.2016.08.006. [Epub ahead of print].

Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.
Zheng D et al. Oncol Rep. 2016 Aug 11. doi: 10.3892/or.2016.5014. [Epub ahead of print].

FGFR3 preferentially colocalizes with IGH in the interphase nucleus of multiple myeloma patient B-cells when FGFR3 is located outside of CT4.
Martin LD et al. Genes Chromosomes Cancer. 2016 Aug 11. doi: 10.1002/gcc.22394. [Epub ahead of print].

Downregulation of p53-inducible microRNAs 192, 194, and 215 Impairs the p53/MDM2 Autoregulatory Loop in Multiple Myeloma Development.
Pichiorri F et al. Cancer Cell. 2016 Aug 8;30(2):349-351. doi: 10.1016/j.ccell.2016.07.007.

Frequency of expression and generation of T-cell responses against antigens on multiple myeloma cells in patients included in the GMMG-MM5 trial.
Schmitt M et al. Oncotarget. 2016 Aug 11. doi: 10.18632/oncotarget.11215. [Epub ahead of print].

Specificity of protein covalent modification by the electrophilic proteasome inhibitor carfilzomib in human cells.
Federspiel JD et al. Mol Cell Proteomics. 2016 Aug 8. pii: mcp.M116.059709. [Epub ahead of print].

Fucoidan inhibits angiogenesis induced by multiple myeloma cells.
Liu F et al. Oncol Rep. 2016 Aug 1. doi: 10.3892/or.2016.4987. [Epub ahead of print].

Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma.
Poupot M et al. Nanomedicine. 2016 Aug 3. pii: S1549-9634(16)30099-5. doi: 10.1016/j.nano.2016.07.009. [Epub ahead of print].

Role of micro-RNAs in drug resistance of multiple myeloma.
Abdi J et al. Oncotarget. 2016 Aug 2. doi: 10.18632/oncotarget.11032. [Epub ahead of print].

Smac mimetic LCL161 overcomes protective ER stress induced by obatoclax, synergistically causing cell death in multiple myeloma.
Ramakrishnan V et al. Oncotarget. 2016 Aug 2. doi: 10.18632/oncotarget.11028. [Epub ahead of print].

The molecular mechanism of thalidomide analogs in hematologic malignancies.
Lindner S et al. J Mol Med (Berl). 2016 Aug 5. [Epub ahead of print].

CSTMP induces apoptosis and mitochondrial dysfunction in human myeloma RPMI8226 cells via CHOP-dependent endoplasmic reticulum stress.
Sun X et al. Biomed Pharmacother. 2016 Aug 1;83:776-784. doi: 10.1016/j.biopha.2016.07.045. [Epub ahead of print].

KLF4: a new player in plasma cell development.
Elemento O et al. Cell Cycle. 2016 Aug 2:0. [Epub ahead of print].

Erythropoietin treatment in murine multiple myeloma: immune gain and bone loss.
Deshet-Unger N et al. Sci Rep. 2016 Aug 2;6:30998. doi: 10.1038/srep30998.

Differentiation stage of myeloma plasma cells: biological and clinical significance.
Paiva B et al. Leukemia. 2016 Aug 1. doi: 10.1038/leu.2016.211. [Epub ahead of print].

BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma.
Dousset C et al. Br J Haematol. 2016 Jul 29. doi: 10.1111/bjh.14251. [Epub ahead of print].