Outcome of Patients with Multiple Myeloma and CKS1B Gene Amplification after Autologous Hematopoietic Stem Cell Transplantation.
Bock F et al. Biol Blood Marrow Transplant. 2016 Sep 13. pii: S1083-8791(16)30329-9. doi: 10.1016/j.bbmt.2016.09.003. [Epub ahead of print].

Outcomes in patients with multiple myeloma with TP53 deletion after autologous hematopoietic stem cell transplant.
Gaballa S et al. Am J Hematol. 2016 Oct;91(10):E442-7. doi: 10.1002/ajh.24487. Epub 2016 Sep 3.

Dose-dense and less dose-intense total therapy 5 for gene expression profiling-defined high-risk multiple myeloma.
Jethava Y et al. Blood Cancer J. 2016 Sep 16;6:e471. doi: 10.1038/bcj.2016.85.

A DNA target-enrichment approach to detect mutations, copy number changes and immunoglobulin translocations in multiple myeloma.
Bolli N et al. Blood Cancer J. 2016 Sep 2;6(9):e467. doi: 10.1038/bcj.2016.72.

A meta-analysis of multiple myeloma risk regions in African and European ancestry populations identifies putatively functional loci.
Rand KA et al. Cancer Epidemiol Biomarkers Prev. 2016 Sep 1. pii: cebp.1193.2015. [Epub ahead of print].

Recurrent mutations of MAPK pathway genes in multiple myeloma but not in amyloid light-chain amyloidosis.
Kim SJ et al. Oncotarget. 2016 Sep 15. doi: 10.18632/oncotarget.12029. [Epub ahead of print].

Bone marrow stromal cells show distinct gene expression patterns depending on symptomatically involved organs in multiple myeloma.
Kim SY et al. Blood Cancer J. 2016 Sep 23;6(9):e476. doi: 10.1038/bcj.2016.86.

To b(ortezomib) or not to be: the stroma’s the thing.
Krem MM et al. J Pathol. 2016 Oct;240(2):123-5. doi: 10.1002/path.4763. Epub 2016 Sep 9.

Type I insulin-like growth factor receptor signaling in hematological malignancies.
Vishwamitra D et al. Oncotarget. 2016 Sep 19. doi: 10.18632/oncotarget.12123. [Epub ahead of print].

Interferon-stimulated gene 15 induces cancer cell death by suppressing the NF-κB signaling pathway.
Mao H et al. Oncotarget. 2016 Sep 21. doi: 10.18632/oncotarget.12160. [Epub ahead of print].

Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibitsmyeloma growth.
Burger R et al. Haematologica. 2016 Sep 22. pii: haematol.2016.145060. [Epub ahead of print].

Deptor transcriptionally regulates endoplasmic reticulum homeostasis in multiple myeloma cells.
Catena V et al. Oncotarget. 2016 Sep 16. doi: 10.18632/oncotarget.12060. [Epub ahead of print].

Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma.
Crawford LJ et al. Oncotarget. 2016 Sep 15. doi: 10.18632/oncotarget.12026. [Epub ahead of print].

Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone.
Trotter TN et al. Am J Pathol. 2016 Sep 17. pii: S0002-9440(16)30292-9. doi: 10.1016/j.ajpath.2016.07.012. [Epub ahead of print].

Reduced response of IRE1α/Xbp-1 signaling pathway to bortezomib contributes to drug resistance in multiple myeloma cells.
Xu X et al. Tumori. 2016 Sep 7:0. doi: 10.5301/tj.5000554. [Epub ahead of print].

Integrative analysis of signaling pathways and diseases associated with the miR-106b/25 cluster and their function study in berberine-induced multiple myeloma cells.
Gu C et al. Funct Integr Genomics. 2016 Sep 19. [Epub ahead of print].

Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway.
Roy P et al. Oncogene. 2016 Sep 19. doi: 10.1038/onc.2016.309. [Epub ahead of print].

An LPA1/3 Axis Governs Cellular Senescence of Mesenchymal Stromal Cells (MSCs) and Promotes Growth and Vascularization of Multiple Myeloma.
Kanehira M et al. Stem Cells. 2016 Sep 19. doi: 10.1002/stem.2499. [Epub ahead of print].

Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells.
Yao Y et al. Oncotarget. 2016 Sep 13. doi: 10.18632/oncotarget.11988. [Epub ahead of print].

Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma.
Xu L et al. Cancer Res. 2016 Sep 7. pii: canres.0517.2016. [Epub ahead of print].

Adoptive transfer of tumor-specific Th2 cells eradicates tumors by triggering an in situ inflammatory immune response.
Lorvik KB et al. Cancer Res. 2016 Sep 12. pii: canres.1219.2016. [Epub ahead of print].

Identification of Doxorubicin as an Inhibitor of the IRE1α-XBP1 Axis of the Unfolded Protein Response.
Jiang D et al. Sci Rep. 2016 Sep 16;6:33353. doi: 10.1038/srep33353.

Tumor-specific CD4+ T cells eradicate myeloma cells genetically deficient in MHC class II display.
Tveita A et al. Oncotarget. 2016 Sep 10. doi: 10.18632/oncotarget.11946. [Epub ahead of print].

A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration.
Amachi R et al. Oncotarget. 2016 Sep 10. doi: 10.18632/oncotarget.11927. [Epub ahead of print].

Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming.
Riz I et al. Oncotarget. 2016 Sep 10. doi: 10.18632/oncotarget.11960. [Epub ahead of print].

Evaluation of the potential therapeutic benefits of macrophage reprogramming in multiple myeloma.
Gutiérrez-González A et al. Blood. 2016 Sep 13. pii: blood-2016-01-695395. [Epub ahead of print].

PD-1/PD-L1 expression in extra-medullary lesions of multiple myeloma.
Crescenzi A et al. Leuk Res. 2016 Oct;49:98-101. doi: 10.1016/j.leukres.2016.09.008. Epub 2016 Sep 5.

Effect of Cytokine Genes in the Pathogenesis and on the Clinical Parameters for the Treatment of Multiple Myeloma.
Haydaroglu H et al. Immunol Invest. 2016 Sep 9:1-12. [Epub ahead of print].

Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity.
Pogue SL et al. PLoS One. 2016 Sep 9;11(9):e0162472. doi: 10.1371/journal.pone.0162472. eCollection 2016.

The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in humanmultiple myeloma.
Kamihara Y et al. Oncotarget. 2016 Sep 2. doi: 10.18632/oncotarget.11830. [Epub ahead of print].

Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review).
Wang X et al. Int J Mol Med. 2016 Oct;38(4):1021-9. doi: 10.3892/ijmm.2016.2724. Epub 2016 Aug 31.

Spontaneous onset and transplant models of the Vk*MYC mouse show immunological sequelae comparable to human multiple myeloma.
Cooke RE et al. J Transl Med. 2016 Sep 6;14:259. doi: 10.1186/s12967-016-0994-6.

MiR-15a/16 regulates the growth of myeloma cells, angiogenesis and antitumor immunity by inhibiting Bcl-2, VEGF-A and IL-17 expression in multiple myeloma.
Li Y et al. Leuk Res. 2016 Oct;49:73-9. doi: 10.1016/j.leukres.2016.08.013. Epub 2016 Aug 28.

Erythropoietin (EPO)-receptor signaling induces cell death of primary myeloma cells in vitro.
Våtsveen TK et al. J Hematol Oncol. 2016 Aug 31;9(1):75. doi: 10.1186/s13045-016-0306-x.

AZD5153: a novel bivalent BET bromodomain inhibitor highly active against hematologic malignancies.
Rhyasen GW et al. Mol Cancer Ther. 2016 Aug 29. pii: molcanther.0141.2016. [Epub ahead of print].

IQGAP1 Scaffold-MAP Kinase Interactions Enhance Multiple Myeloma Clonogenic Growth and Self-Renewal.
Gocke CB et al. Mol Cancer Ther. 2016 Aug 29. pii: molcanther.0323.2016. [Epub ahead of print].

Antimyeloma activity of bromodomain inhibitors on the human myeloma cell line U266 by downregulation of MYCL.
Suzuki K et al. Anticancer Drugs. 2016 Sep;27(8):756-65. doi: 10.1097/CAD.0000000000000389.