High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma.
Sun Y et al. Cancer Lett. 2017 Oct 12. pii: S0304-3835(17)30629-8. doi: 10.1016/j.canlet.2017.10.005. [Epub ahead of print].

Characterization and use of the novel human multiple myelomacell line MC-b11/14 to study biological consequences of CRISPR-mediated loss of immunoglobulin a heavy chain.
Walters DK et al. Exp Hematol. 2017 Oct 10. pii: S0301-472X(17)30814-7. doi: 10.1016/j.exphem.2017.09.010. [Epub ahead of print].

The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent.
Lagler C et al. PLoS One. 2017 Oct 13;12(10):e0185720. doi: 10.1371/journal.pone.0185720. eCollection 2017.

Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab.
Krejcik J et al. Clin Cancer Res. 2017 Oct 12. pii: clincanres.2027.2017. doi: 10.1158/1078-0432.CCR-17-2027. [Epub ahead of print].

Knockdown of REGγ inhibits the proliferation and migration and promotes the apoptosis of multiple myeloma cells by downregulating NF-κB signal pathway.
Liu S et al. Hematology. 2017 Oct 11:1-7. doi: 10.1080/10245332.2017.1385194. [Epub ahead of print].

The induction of myeloma cell death and DNA damage by tetrac, a thyroid hormone derivative.
Cohen K et al. Endocr Relat Cancer. 2017 Oct 10. pii: ERC-17-0246. doi: 10.1530/ERC-17-0246. [Epub ahead of print].

Monoclonal IgG in MGUS and multiple myeloma targets infectious pathogens.
Bosseboeuf A et al. JCI Insight. 2017 Oct 5;2(19). pii: 95367. doi: 10.1172/jci.insight.95367. [Epub ahead of print].

Multiple Myeloma Cell Drug Responses Differ in Thermoplastic vs. PDMS Microfluidic Devices.
Moore T et al. Anal Chem. 2017 Oct 3. doi: 10.1021/acs.analchem.7b02351. [Epub ahead of print].

Role of protein kinases CK1α and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways.
Manni S et al. J Hematol Oncol. 2017 Oct 2;10(1):157. doi: 10.1186/s13045-017-0529-5.

pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo.
Cafforio P et al. Stem Cell Res Ther. 2017 Sep 29;8(1):206. doi: 10.1186/s13287-017-0655-6.

CRISPR genome-wide screening identifies dependence on the proteasome subunit PSMC6 for Bortezomib sensitivity in multiple myeloma.
She CX et al. Mol Cancer Ther. 2017 Sep 27. pii: molcanther.0130.2016. doi: 10.1158/1535-7163.MCT-17-0130. [Epub ahead of print].

PRAME Gene Copy Number Variation Is Related to Its Expression in Multiple Myeloma.
Yang L et al. DNA Cell Biol. 2017 Sep 27. doi: 10.1089/dna.2017.3951. [Epub ahead of print].

A compound chimeric antigen receptor strategy for targeting multiple myeloma.
Chen KH et al. Leukemia. 2017 Sep 27. doi: 10.1038/leu.2017.302. [Epub ahead of print].

Recurrent alterations of the WW domain containing oxidoreductase gene spanning the common fragile site FRA16D in multiple myeloma and monoclonal gammopathy of undetermined significance.
Handa H et al. Oncol Lett. 2017 Oct;14(4):4372-4378. doi: 10.3892/ol.2017.6672. Epub 2017 Jul 26.

Network-based analysis of the molecular mechanisms of multiple myeloma and monoclonal gammopathy of undetermined significance.
Liu Z et al. Oncol Lett. 2017 Oct;14(4):4167-4175. doi: 10.3892/ol.2017.6723. Epub 2017 Aug 4.

Histone deacetylase inhibitor BG45-mediated HO-1 expression induces apoptosis of multiple myeloma cells by the JAK2/STAT3 pathway.
Tang S et al. Anticancer Drugs. 2017 Oct 18. doi: 10.1097/CAD.0000000000000568. [Epub ahead of print].

Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma.
Cholujova D et al. Br J Haematol. 2017 Oct 19. doi: 10.1111/bjh.14974. [Epub ahead of print].

UTX/KDM6A Loss Enhances the Malignant Phenotype of Multiple Myeloma and Sensitizes Cells to EZH2 inhibition.
Ezponda T et al. Cell Rep. 2017 Oct 17;21(3):628-640. doi: 10.1016/j.celrep.2017.09.078.

Cell Signaling Model Connects Vorinostat Pharmacokinetics and Tumor Growth Response in Multiple Myeloma Xenografts.
Nanavati C et al. CPT Pharmacometrics Syst Pharmacol. 2017 Oct 17. doi: 10.1002/psp4.12246. [Epub ahead of print].

Identifying the biomarker potential of telomerase activity and shelterin complex molecule, telomeric repeat binding factor 2 (TERF2), in multiple myeloma.
Kumar R et al. Leuk Lymphoma. 2017 Oct 18:1-13. doi: 10.1080/10428194.2017.1387915. [Epub ahead of print].

Comparison of IGH Profile Signals Using t(4;14) and IGH Break-Apart Probes by FISH in Multiple Myeloma.
Smol T et al. Cytogenet Genome Res. 2017 Oct 18. doi: 10.1159/000481523. [Epub ahead of print].

Novel YAP1 Activator, Identified by Transcription-based Functional Screen, Limits Multiple Myeloma Growth.
Maruyama J et al. Mol Cancer Res. 2017 Oct 23. pii: molcanres.0382.2017. doi: 10.1158/1541-7786.MCR-17-0382. [Epub ahead of print].

Lenalidomide enhances the function of CS1 chimeric antigen receptor redirected T cells against multiple myeloma.
Wang X et al. Clin Cancer Res. 2017 Oct 23. pii: clincanres.0344.2017. doi: 10.1158/1078-0432.CCR-17-0344. [Epub ahead of print].