Altered microRNA expression profile in the peripheral lymphoid compartment of multiple myeloma patients with bisphosphonate-induced osteonecrosis of the jaw.
Musolino C et al. Ann Hematol. 2018 Mar 15. doi: 10.1007/s00277-018-3296-7. [Epub ahead of print].
A novel nano-immunoassay method for quantification of proteins from CD138 purified myeloma cells: biological and clinical utility.
Misiewicz-Krzeminska I et al. Haematologica. 2018 Mar 15. pii: haematol.2017.181628. doi: 10.3324/haematol.2017.181628. [Epub ahead of print].
Cereblon loss and up-regulation of c-Myc are associated with lenalidomide resistance in multiple myeloma patients.
Franssen LE et al. Haematologica. 2018 Mar 15. pii: haematol.2017.186601. doi: 10.3324/haematol.2017.186601. [Epub ahead of print].
Loss of the Immune Checkpoint CD85j/LILRB1 on Malignant Plasma Cells Contributes to Immune Escape in Multiple Myeloma.
Lozano E et al. J Immunol. 2018 Mar 12. pii: ji1701622. doi: 10.4049/jimmunol.1701622. [Epub ahead of print].
Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma.
Jin Y et al. Blood. 2018 Mar 8. pii: blood-2017-09-808063. doi: 10.1182/blood-2017-09-808063. [Epub ahead of print].
The combination of ionizing radiation and proteasomal inhibition by bortezomib enhances the expression of NKG2D ligands in multiple myeloma cells.
Lee YS et al. J Radiat Res. 2018 Mar 6. doi: 10.1093/jrr/rry005. [Epub ahead of print].
Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma.
Gherardin NA et al. Sci Rep. 2018 Mar 7;8(1):4159. doi: 10.1038/s41598-018-22130-1.
Interferon γ is a strong, STAT1-dependent direct inducer of BCL6 expression in multiple myeloma cells.
Ujvari D et al. Biochem Biophys Res Commun. 2018 Mar 3. pii: S0006-291X(18)30484-4. doi: 10.1016/j.bbrc.2018.03.010. [Epub ahead of print].
LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma.
Yang X et al. Biochem Biophys Res Commun. 2018 Mar 25;498(1):207-213. doi: 10.1016/j.bbrc.2018.02.211. Epub 2018 Mar 1.
Daratumumab augments alloreactive natural killer cell cytotoxicity towards CD38+ multiple myeloma cell lines in a biochemical context mimicking tumour microenvironment conditions.
Mahaweni NM et al. Cancer Immunol Immunother. 2018 Mar 2. doi: 10.1007/s00262-018-2140-1. [Epub ahead of print].
DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells.
Bruyer A et al. Br J Cancer. 2018 Mar 2. doi: 10.1038/s41416-018-0025-x. [Epub ahead of print].
R-spondin(g) to syndecan-1 in myeloma.
Grant S. Blood. 2018 Mar 1;131(9):946-947. doi: 10.1182/blood-2017-12-821504.
Possible targets to treat myeloma-related osteoclastogenesis.
Bolzoni M et al. Expert Rev Hematol. 2018 Mar 9:1-12. doi: 10.1080/17474086.2018.1447921. [Epub ahead of print].
Bone marrow-derived mesenchymal stem cells promote cell proliferation of multiple myeloma through inhibiting T-cell immune responses via PD-1/PD-L1 pathway.
Chen D et al. Cell Cycle. 2018 Mar 1:1-33. doi: 10.1080/15384101.2018.1442624. [Epub ahead of print].
Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma.
Zheng Z et al. J Hematol Oncol. 2018 Feb 27;11(1):29. doi: 10.1186/s13045-018-0575-7.
Hypoxia-inducible KDM3A addiction in multiple myeloma.
Ikeda S et al. Blood Adv. 2018 Feb 27;2(4):323-334. doi: 10.1182/bloodadvances.2017008847.
Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin® protein MP0250: a preclinical study.
Rao L et al. Oncotarget. 2018 Jan 30;9(17):13366-13381. doi: 10.18632/oncotarget.24351. eCollection 2018 Mar 2.
Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.
Xu D et al. Cancer Cell Int. 2018 Mar 20;18:42. doi: 10.1186/s12935-018-0541-z. eCollection 2018.
MK2 is a therapeutic target for high-risk multiple myeloma.
Gu C et al. Haematologica. 2018 Mar 22. pii: haematol.2017.182121. doi: 10.3324/haematol.2017.182121. [Epub ahead of print].
Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.
Wang J et al. Hematology. 2018 Mar 22:1-6. doi: 10.1080/10245332.2018.1449338. [Epub ahead of print].
Long noncoding RNA UCA1 promotes multiple myeloma cell growth by targeting TGF-β.
Zhang ZS et al. Eur Rev Med Pharmacol Sci. 2018 Mar;22(5):1374-1379. doi: 10.26355/eurrev_201803_14481.
A multiple myeloma-specific capture sequencing platform discovers novel translocations and frequent, risk-associated point mutations in IGLL5.
White BS et al. Blood Cancer J. 2018 Mar 21;8(3):35. doi: 10.1038/s41408-018-0062-y.
MicroRNA-338-3p inhibits proliferation and promotes apoptosis of multiple myeloma cells through targeting Cyclin-dependent kinase 4.
Cao Y et al. Oncol Res. 2018 Mar 21. doi: 10.3727/096504018X15213031799835. [Epub ahead of print].
Blocking IFNRA1 inhibits multiple myeloma-driven Treg expansion and immunosuppression.
Kawano Y et al. J Clin Invest. 2018 Mar 20. pii: 88169. doi: 10.1172/JCI88169. [Epub ahead of print].
Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment.
Nakamura K et al. Cancer Cell. 2018 Mar 1. pii: S1535-6108(18)30060-6. doi: 10.1016/j.ccell.2018.02.007. [Epub ahead of print].
A Challenge to Aging Society by microRNA in Extracellular Vesicles: microRNA in Extracellular Vesicles as Promising Biomarkers and Novel Therapeutic Targets in Multiple Myeloma.
Yamamoto T et al. J Clin Med. 2018 Mar 12;7(3). pii: E55. doi: 10.3390/jcm7030055.
Different Adaptive Responses to Hypoxia in Normal and Multiple Myeloma Endothelial Cells.
Filippi I et al. Cell Physiol Biochem. 2018 Mar 21;46(1):203-212. doi: 10.1159/000488423. [Epub ahead of print].
Strong immunoexpression of dickkopf-1 is associated with response to bortezomib in multiple myeloma.
Choi YW et al. Leuk Lymphoma. 2018 Mar 27:1-9. doi: 10.1080/10428194.2018.1443331. [Epub ahead of print].
Anti-CD38 and anti-SLAMF7: the future of myeloma immunotherapy.
Zamagni E et al. Expert Rev Hematol. 2018 Mar 27:1-13. doi: 10.1080/17474086.2018.1456331. [Epub ahead of print].
Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma.
Zhang X et al. Leukemia. 2018 Mar 27. doi: 10.1038/s41375-018-0044-x. [Epub ahead of print].
Modulating PD-L1 expression in multiple myeloma: an alternative strategy to target the PD-1/PD-L1 pathway.
Tremblay-LeMay R et al. J Hematol Oncol. 2018 Mar 27;11(1):46. doi: 10.1186/s13045-018-0589-1.